Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Comp Neurol ; 531(17): 1846-1866, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37794741

RESUMO

In the rat laryngeal mucosa, subepithelial corpuscular nerve endings, called laminar nerve endings, are distributed in the epiglottis and arytenoid region and are activated by the pressure changes of the laryngeal cavity. They are also suggested to play a role in efferent regulation because of secretory vesicles in the axoplasm. In the present study, the laminar nerve endings in the rat laryngeal mucosa were analyzed by 3D reconstruction from serial ultrathin sections in addition to immunohistochemistry for synapsin 1. In the light microscopy, synapsin 1-immunoreactive flattened or bulbous terminal parts of the laminar endings were also immunoreactive with VGLUT1, and were surrounded by S100- or S100B-immunoreactive Schwann cells and vimentin-immunoreactive fibroblasts. In the electron microscopy, 3D reconstruction views showed that laminar endings were composed of flattened terminal parts sized 2-5 µm in longitudinal length, overlapping in three to five multiple layers. The terminal parts of the endings were incompletely wrapped by flat cytoplasmic processes of the Schwann cells. In addition, the fibroblast network surrounded the complex of nerve endings and the Schwann cells. Several terminal parts entered through the basement membrane into the epithelial layer and attached to the basal epithelial cells, suggesting that interaction between epithelial cells and laminar nerve endings plays an important role in sensing the pressure changes in the laryngeal cavity. Secretory vesicles were unevenly distributed throughout the terminal part of the laminar nerve endings. The secretory vesicles were frequently observed in the peripheral limb of the terminal parts. It suggests that the laminar nerve endings in the larynx may release glutamate to maintain continuous discharge during the stretching of the laryngeal mucosa.


Assuntos
Epiglote , Células Receptoras Sensoriais , Ratos , Animais , Microscopia Eletrônica de Varredura , Sinapsinas , Terminações Nervosas
2.
Front Microbiol ; 14: 1328055, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38282743

RESUMO

Staphylococcus aureus grows in the skin of patients with atopic dermatitis and the associated symptoms are induced by membrane vesicles (MVs). This study explored the effects of slightly acidic electrolyzed water (SAEW) on the expression of virulence factors of S. aureus and MV-induced inflammation to uncover the potential of SAEW as a new treatment method for atopic dermatitis. Expression levels of genes related to virulence factors in S. aureus was assessed and S. aureus-derived MVs were characterized. Moreover, expression level of MV-induced Type I allergic reaction-related genes in RBL2H3 cells was also assessed. Significantly decreased staphylococcal enterotoxin A production and decreased virulence factor-related gene expression were observed after culturing S. aureus in broth supplemented with SAEW at ratios of 1, 2, and 5 per broth. MVs prepared by culturing S. aureus in SAEW-supplemented broth exhibited altered particle size and markedly reduced staphylococcal enterotoxin A content under all addition conditions; moreover, those obtained at a ratio of 1:5 (broth:SAEW) exhibited a reduction in the expression of several proteins associated with hemolytic activity and free iron uptake. The MVs prepared in SAEW-supplemented broth also exhibited remarkably reduced allergy-related gene expression levels in rat cell lines derived from basophilic leukemia-2H3 cells. Overall, SAEW is expected to suppress atopic dermatitis symptoms through the alteration of the properties of S. aureus-derived MVs.

3.
Microorganisms ; 10(3)2022 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-35336149

RESUMO

Virulence factors, such as staphylococcal enterotoxin A (SEA), are contained within membrane vesicles (MVs) in the cell membrane of Staphylococcus aureus. In this study, the effects of the growth stage on quantitative and qualitative changes in the components contained in the MVs of S. aureus SEA-producing strains were examined. Changes in the expression levels of S. aureus genes were examined at each growth stage; phenol-soluble modulin (PSM) gene reached a maximum after 8 h, and the expression of cell membrane-related genes was decreased after 6 h. Based on these gene expression patterns, MVs were prepared at 6, 17, and 24 h. The particle size of MVs did not change depending on the growth stage. MVs prepared after culture for 17 h maintained their particle size when stored at 23 °C. The amount of SEA in the culture supernatant and MVs were not correlated. Bifunctional autolysin, a protein involved in cell wall biosynthesis/degradation, was increased in MVs at 17 h. The expression pattern of inflammation-related genes in human adult low calcium high temperature (HaCaT) cells induced by MVs was different for each growth stage. The inclusion components of S. aureus-derived MVs are selective, depend on the stage of growth, and may play an important role in toxicity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...